Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 94: 372-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079832

RESUMO

Drug nanoparticles in suspensions can form aggregates leading to physical instability, which is traditionally mitigated using soluble polymers and surfactants. The aim of this paper was to explore common superdisintegrants, i.e., sodium starch glycolate (SSG), croscarmellose sodium (CCS), and crospovidone (CP), as novel class of dispersants for enhanced stabilization of fenofibrate (FNB), a model BCS Class II drug, suspensions. FNB was wet-milled with superdisintegrants along with hydroxypropyl methylcellulose (HPMC), a soluble adsorbing polymer, in a stirred media mill. For comparison, FNB was also milled in the presence of HPMC and/or SDS (sodium dodecyl sulfate) without superdisintegrants. Laser diffraction, scanning electron microscopy, viscometry, differential scanning calorimetry, and powder X-ray diffraction were used to characterize the suspensions. The results show that 2% HPMC along with 1% SSG or 1% CCS mitigated the aggregation of FNB nanoparticles significantly similar to the use of either 5% HPMC or 1% HPMC-0.075% SDS, whereas CP was not effective due to its low swelling capacity. CCS/SSG enhanced steric-kinetic stabilization of the FNB suspensions owing to their high swelling capacity, viscosity enhancement, and physical barrier action. Overall, this study provides a mechanistic basis for a novel method of formulating surfactant-free drug nanosuspensions with co-milled superdisintegrants.


Assuntos
Excipientes/química , Fenofibrato/química , Hipolipemiantes/química , Derivados da Hipromelose/química , Nanopartículas/química , Tecnologia Farmacêutica/métodos , Adsorção , Carboximetilcelulose Sódica/química , Estabilidade de Medicamentos , Cinética , Povidona/química , Amido/análogos & derivados , Amido/química , Suspensões
2.
AAPS PharmSciTech ; 13(4): 1473-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23090112

RESUMO

Recent interest in the development of drug particle-laden strip-films suggests the need for establishing standard regulatory tests for their dissolution. In this work, we consider the dissolution testing of griseofulvin (GF) particles, a poorly water-soluble compound, incorporated into a strip-film dosage form. The basket apparatus (USP I) and the flow-through cell dissolution apparatus (USP IV) were employed using 0.54% sodium dodecyl sulfate as the dissolution medium as per USP standard. Different rotational speeds and dissolution volumes were tested for the basket method while different cell patterns/strip-film position and dissolution media flow rate were tested using the flow-through cell dissolution method. The USP I was not able to discriminate dissolution of GF particles with respect to particle size. On the other hand, in the USP IV, GF nanoparticles incorporated in strip-films exhibited enhancement in dissolution rates and dissolution extent compared with GF microparticles incorporated in strip-films. Within the range of patterns and flow rates used, the optimal discrimination behavior was obtained when the strip-film was layered between glass beads and a flow rate of 16 ml/min was used. These results demonstrate the superior discriminatory power of the USP IV and suggest that it could be employed as a testing device in the development of strip-films containing drug nanoparticles.


Assuntos
Química Farmacêutica/métodos , Griseofulvina/química , Nanopartículas/química , Formas de Dosagem , Membranas Artificiais , Tamanho da Partícula , Dodecilsulfato de Sódio/química , Solubilidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA